
Particle Filter Localization
Autonomous Robot Navigation (E160) Lab 4 Report

Sean Mahre
Department of Engineering

Harvey Mudd College
Claremont, CA

smahre@hmc.edu

Eyassu Shimelis
Department of Engineering

Harvey Mudd College
Claremont, CA

eshimelis@hmc.edu

Abstract—This report details the design and implementation
of a particle filter in a differential drive robot. The filter
must accurately localize the agent in both known and unknown
locations. In simulation, a particle filter with 150 particles
estimated the robot state with a root-mean-square error (RMSE)
of 0.131m. In hardware, the lack of a ground truth meant that we
could not quantify the localization error. The point-tracker was
used to close the point tracker feedback loop, and the localization
results remained consistent and stable despite growing odometry
errors.

I. INTRODUCTION

Localization under uncertainty has been an important break-
through in the field of robotics in the past few decades. In
the previous lab, only odometry was used to estimate the
robot’s state; however, this type of localization is prone to
accumulating error over time.

II. BACKGROUND

A. Particle Filtering

The particle filter is a nonparametric filtering technique used
to localize agents in noisy or uncertain environments. The filter
relies on an approximated posterior, rather than a posterior
with a fixed functional form, such as a Gaussian [1].

Particle filters maintain a discrete number of belief states
in a large state space. This discretization allows for a fast
posterior approximation, at the cost of reduced accuracy. The
particle filter algorithm is outlined in Alg. 1.

III. PROBLEM DEFINITION

The goal of this lab is to design and implement a particle
filter on an E160 robot. The filter must remain robust despite
noisy IR range sensor measurements.

The E160 robot is a differential-drive robot operating in a
two-dimensional space. Its state ξ consists of its position and
heading,

ξ = [x, y, θ]
T
. (1)

We would like to approximate this state with a finite set of
particles X at time t:

Xt := {ξmt , wmt }Mm=1,

where ξmt is the belief state with an associated weight, wmt .

Fig. 1: A step-by-step particle filter example in a single
dimension. Each circle represents a belief state; the radius
being proportional to the estimate’s weight.

IV. PARTICLE FILTER DESIGN

At each time step, every sample in the particle set Xt−1

is propagated using a noisy kinematic model. Each particle
is weighted by comparing its expected sensor measurements
to the actual measurement, as described in Section IV-A.
Finally, the weighted particles are sampled into a new set Xt
with a selection probability equal to its relative weight. This
algorithm is specified further in Alg. 1 [1].

A. Wall Distance Calculation

Each particle is weighted based on its position in the map
and its expected sensor measurements. Recall, the E160 robot
has three IR range sensors: one facing forwards, and two on
either side. At each time step, the weight of each particle is
determined by comparing the actual measurement z to the
expected measurement zexp. For each particle, the expected
sensor reading must be computer from its current position in
a known map. Generally, for each range sensor, the expected
sensor reading is the minimum distance to every wall in the
map.

1

mailto:smahre@g.hmc.edu
mailto:eshimelis@hmc.edu

Algorithm 1 Particle Filter Algorithm

1: function PARTICLE FILTER(Xt−1, ut, zt):
2: X̄t = Xt = ∅ . Initialize new particle set
3: for m = 1 to M do
4: sample xmt ∼ p(xt|ut, xmt−1)
5: wmt = p(zt|xmt) . Using probabilistic sensor

model, see section IV-B
6: X̄ = X̄ + 〈xmt , wmt 〉
7: end for
8: for m = 1 to M do
9: draw i with probability ∝ wmt

10: add xit to Xt
11: end for
12: return Xt
13: end function

Fig. 2: Particle filter diagram for a differential drive robot.
Each particle is an instantiated belief of the robot’s state. At
each time, each particle is propagated using a noisy kinematic
model. This leads to growing uncertainty, which is corrected
during resampling.

The vectors intersect if ∃ k, v such that

w + kd = b + vh.

There are two unknowns, but only a single equation. Taking
the cross product of both sides by d,

(w × d) + k(d× d) = (b× d) + v(h× d).

The cross product of any vector with itself is equal to zero,
thus d×d = 0, leaving us with a single unknown variable, v.

(w × d) = (b× d) + v(h× d).

Solving for v,

v =
(w − b)× d

h× d
.

The distance z to the wall is then

z = ||vh||. (2)

Fig. 3: The E160 robot has three IR range sensors, where each
measurement z = [zf , zr, zl].

Fig. 4: Vector representation of the wall and the front range
sensor of the robot. This method allows us to compute wall
intersections by solving for the magnitude of the scaling terms,
k, v.

If h × d = 0, the vectors are parallel, and no solution for
v exists. The sensor heading h intersects with the wall if, and
only if,

0 ≤ k ≤ 1

0 < v.

B. Probabilistic Sensor Model

The E160 robot has three Sharp GP2Y0A02YK0F infrared
(IR) range sensors, as pictured in Figure 5b. Each sensor has
an operational range of 15 to 150cm. The sensor operates
by measuring the position of a reflected beam of light on a
position sensitive detector (PSD). Unfortunately, these types
of sensors are subject to noise both internally and due to a
dynamic environment.

2

An important part of developing a particle filter is creating
an accurate model of the sensor noise, as this is what is used
to weight each particle in the set.

(a) The chassis diameter measures
14.15 cm ± 0.01 and each wheel has
a diameter of 6.95 cm± 0.01.

(b) Sharp GP2Y0A02YK0F
infrared (IR) range sensor.
from 15 to 150cm

Fig. 5: The E160 robot chassis and range sensor

Range sensor measurement models G are often represented
as normal distributions about the true measurement zexp
(G ∼ N (zexp, σs)), where σs is an experimentally determined
standard deviation of the sensor’s noise, see Eq. 3. The noisy
measurement model is represented in the top left of Figure 6.

A more complete model, however, will combine multiple
probabilistic sensor models in order to account for other
factors that may affect the distribution of measurements. This
model is called the beam-based sensor model; a mixture of
four probabilistic sensor models [2].

Fig. 6: The probabilistic beam sensor model is composed of
four distributions, each meant to model an accurate sensor
probability distribution p(z|zexp = r).

pn(z|zexp = r) = η
1√

2πσs
e−(z−r)/2σs , (3)

where η is a normalization factor.
In addition to the noisy measurement model, an obstacle

model is included to represent the probability of unexpected
range measurements such as people walking around. This is
represented in Eq. 4 as an exponentially decreasing function

up to the robot. The unexpected obstacle model represented
in the top right of Figure 6.

po(z|zexp = r) =

{
ηλe−λz, if z < r

0, otherwise
(4)

The third element to the probabilistic sensor model is
a random noise component. This random noise, as shown
in Eq. 5, is uniformly distributed across all possible range
measurements. The random noise model is represented in the
bottom left of Figure 6.

pr(z) = η
1

zmax
(5)

The final component is the maximum range model, de-
scribed in Eq. 6. The IR range sensor has a limited range,
and for very large maps with distant walls, it is very likely
that the sensor will be unable to measure the distance, thus
reporting a maximum measurement reading. The maximum
range model is represented in the bottom right of Figure 6.

pm(z) = η
1

zsmall
(6)

In Eq. 7, we see that the final sensor model G is a mixture
of the four models. This is the sensor model that is used to
weight each particle in the particle filter.

G(z|zexp = r) =

pn(z|zexp = r) + po(z|zexp = r) + pr(z) + pm(z)
(7)

This model varies from sensor to sensor. The model for
a specific sensor can be determined using regression, on
functions 3 - 6.

Fig. 7: Overlaying these models shows the relative importance
of each component.

C. Particle Weighting

At every iteration

3

Fig. 8: The final probabilistic sensor model is a mixture of all
of the separate models outlined above.

D. Particle Resampling

A common method is to resample the particle set at every
iteration of the algorithm, or after every n iterations; however,
a slightly more efficient algorithm will resample only when
needed [3] [4]. These methods only resample when the mag-
nitude of weights are below a predefined threshold [5]. This
type of resampling technique will allow particles to propagate
for longer periods of time before resampling, which alleviates
the issue of particle deprivation.

V. FILTER IMPLEMENTATION

The E160 robot uses an XBee wireless module to wirelessly
communicate with an off-board computer. All odometry and
sensor measurements are transmitted from the robot to the
off-board computer at each time step. The particle is imple-
mented in Python and also runs on the external computer. The
external computer localizes the robot using the particle filter,
computes the required control efforts, and wirelessly transmits
the control output back to the robot.

The Python program has a graphical user interface (GUI).
The GUI, shown in Figure 9, displays the map, important robot
states, and the particles.

At each time step, the particle filter localized the vehicle,
and the control outputs were wirelessly transmitted to E160
robot.

VI. TESTING AND RESULTS

A. Map

The particle filter was tested in simple hallway. The hallway
has a footprint of approximately 4m by 4m, the specific
measurements are shown in Figure 10. To overcome the
sensor’s limited range, the robot’s path was constructed next
to the walls.

Note that in Figure 9, there are two sets of particles, repre-
senting two separate beliefs because of the map’s symmetry.
This type of behavior is desired when the robot starts at an
unknown location. The two beliefs should be maintained until
the robot reaches a unique point in the map; in this case, the
center of the hallway.

Fig. 9: The E160 graphical user interface. The GUI displays
the map (walls colored black), the estimated odometry state
(orange arrow), the estimated particle filter state (light-green
arrow), the desired state (orange arrow), and the particles (red
circles).

Fig. 10: The hallway map used for simulation and hardware
tests. The origin is located at the bottom right corner of the
hallway. Each hall has a different width: 1.75m ± 0.01 and
1.42m±0.01 for the vertical and horizontal halls, respectively.

B. Simulation

The particle filter was first tested in simulation. The goal of
the first test was to characterize the performance of the particle
filter from a known path through a predefined path. In Figure

4

12, the blue path indicates the odometry-only path, and the
orange is the estimated location of the robot, using a particle
filter with 150 particles. In this experiment, root-mean-square
error (RMSE) is 0.0315m.

Fig. 11: Simulated particle filter test with a known start. The
robot begins in the top left corner of the map and traverses in
a counter-clockwise direction, remaining close to the walls of
the hallway.

The next experiment was to ensure that the particle filter
could converge when with an unknown start. For this ex-
periment, the entire map is populated with 1000 particles,
that slowly converge to the true state. An example of this
convergence is illustrated in Figure 12. Out of 10 random-start
experiments, the particle filter converged to the true position
in 8 of them.

To summarize, the performance of the particle filter in
software is illustrated in Table I.

Tracking Test Convergence Test
RMSE (m) 0.0315 -
Convergence Rate - 0.8

TABLE I: Results of the simulation tests.

C. Hardware

A similar tracking test was performed in hardware. The
robot was placed at a known start and tracked a similar path
around the hallway, using the odometry estimate as the true
position. The results are illustrated in Figure 13. This resulted
in a RMSE of 0.1388m, over four times as worse as the
simulation.

Fig. 12: The robot begins at an unknown location, the red
x, and drives towards the green square. The filter estimate in
orange is stuck between both hallways until finally converging
to the true state when the robot enters a significantly unique
point in the map.

Fig. 13: Hardware particle filter test with a known start. Notice
that the filter estimate worsens with time, this is because the
odometry estimation is assumed to be the true state.

5

Unfortunately, there is no ground truth to compare the
particle filter results. The best approximation is the odometry
results; however, the error is unbounded.

One method to test this is to use the particle filter output
as the state estimate in the robot’s point tracker. This will
test two things: first, that the controller remains stable; and
second, that the robot’s path does not drift with time. Ideally,
we should expect the particle filter estimate to maintain a
consistent path around the hallway. This was tested by running
the robot through three laps around the map, with the particle
filter used for localization.

In the first feedback experiment, the robot was placed at
the starting position and the robot was driven multiple times
around the predefined path. This experiment is designed to
show the error that accumulates in the odometry, despite an
accurate start. The result is illustrated in Figure 14.

Fig. 14: Hardware particle filter test with a known start.
The filter estimate worsens with time because the odometry
estimation is used as the state estimate in the point tracker.

For the second feedback experiment, the robot was placed at
the same start position with an angle offset of approximately
30 degrees. Despite the offset, the particle filter followed
the path in the map. The accumulating odometry error is
propagated until it leaves the map. The result is illustrated
in Figure 15.

VII. CONCLUSION

In simulation, the particle filter has been shown to accurately
estimate the state of the robot with an RMSE of 0.0315m.
Since we lack a ground truth state of the robot in hardware,
we cannot quantify the accuracy of the particle filter.

Fig. 15: Hardware particle filter test with a known start. Notice
that the filter estimate worsens with time, this is because the
odometry estimation is assumed to be the true state.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: The MIT Press, 2006.

[2] P. Abbeel, “Beam sensor models,” 2011, cs-287 university lecture.
[3] D. Crisan and O. Obanubi, “Particle filters with random resampling

times,” Stochastic Processes and their Applications, vol. 122, no. 4, pp.
1332 – 1368, 2012.

[4] P. Abbeel, “Particle filters,” university lecture.
[5] A. Hoover, “Lecture notes: Particle filter,” ece854 university lecture notes.

6

	Introduction
	Background
	Particle Filtering

	Problem Definition
	Particle Filter Design
	Wall Distance Calculation
	Probabilistic Sensor Model
	Particle Weighting
	Particle Resampling

	Filter Implementation
	Testing and Results
	Map
	Simulation
	Hardware

	Conclusion
	References

