
Differential Drive Tracking Controller
Autonomous Robot Navigation (E160) Lab 3 Report

Sean Mahre
Department of Engineering

Harvey Mudd College
Claremont, CA

smahre@hmc.edu

Eyassu Shimelis
Department of Engineering

Harvey Mudd College
Claremont, CA

eshimelis@hmc.edu

Abstract—The goal of this lab is to design and test a point
controller for a differential drive robot. Differential drive robots
have fewer controllable degrees of freedom than the state space,
which adds a nonholonomic constraint. This lab details the design
and implementation of a point tracker in both a simulated and
physical differential drive robot. The controller can effectively
track points both in front of and behind the robot. The final
controller was tested on a series of eleven heading waypoints
and thirteen position-heading waypoints. Both the simulated and
physical robot successfully tracked all of the desired waypoints.
The robot, unlike the simulation, exhibited an absolute steady-
state error of 0.11 rad± 0.01 and 0.03 m± 0.01 in its heading
and euclidean distance respectively.

I. INTRODUCTION

An important component of robotic systems is the ability
to navigate a robot towards a desired state. These states may
be physical (e.g. three-dimensional position of an underwater
position), or even more abstract (e.g. a utility function that
an agent is attempting to maximize). It is important to effec-
tively navigate through a state-space efficiently. This problem
becomes especially more complex when mobility is limited.

The purpose of this lab is to design and test a point tracker
for a differential drive robot.

II. BACKGROUND

A. Differential Drive

A common drive type for small, wheeled robots is a
differential drive system. Differential drive robots are equipped
with two wheels, each spaced a distance L from the center of
the robot. Figure 1(a) shows the two important components of
a differential drive system: wheel radius and wheel separation.
Although a differential drive robot is capable of controlling
two degrees of motion: v and ω, we are interested in con-
trolling it in a higher dimensional state-space; namely, ξ. The
robot state in the inertial frame ξi is dependent on its position
and bearing, as shown in Eq. 1.

ξi = [x, y, θ]
T (1)

The robot’s motion in three dimensional space can be
modeled as traveling along the circular arcs with varying radii,
as shown in Figure 1(b).

(a) Differential drive diagram. (b) State estimation problem.

Fig. 1: Diagram of a differential drive robot. Each wheel has
a radius Rw, separated by a distance of 2L.

This type of motion can then be projected into the inertial
frame using the following kinematic model:

∆ξi =

∆x
∆y
∆θ

 =

∆sl+∆sr
2 cos

(
θ + ∆sr−∆sr

2L

)
∆sl+∆sr

2 sin
(
θ + ∆sr−∆sr

2L

)
∆sr−∆sr

2L

 , (2)

where

∆sl = Rα

∆sr = (R+ 2L)α

∆s = (R+ L), α

∆SL and ∆SR in Eq. 2 are the distances traveled by the
left and right wheel, respectively. Although this drive type is
limited in its local mobility, it still retains access to the general
state-space. The robot used in this report has a wheel radius
of Rw = 3.478 cm± 0.001 and a wheel separation radius of
L = 7.075 cm± 0.001.

III. PROBLEM DEFINITION

The goal of this lab is to design a closed loop con-
troller, which will drive the robot to any desired state ξd =
[xd, yd, θd]

T .

1

mailto:smahre@g.hmc.edu
mailto:eshimelis@hmc.edu

Differential drive systems are nonholonomically con-
strained; that is, the total number of controllable degrees of
freedom is less than the dimension of the state-space. Design-
ing a closed loop controller with nonholonomic constraint;
therefore, is less intuitive.

A diagram of the problem statement is illustrated in Figure
2. The controller must use the two controllable degrees of
freedom—v (forward velocity) and ω (angular velocity)—to
navigate to an arbitrary desired state.

Fig. 2: Problem statement diagram. The robot must navigate
to an arbitrary desired goal state.

IV. CONTROL DESIGN

Given a robot’s current and desired state, ξ and ξd, re-
spectively, we can define the error as the difference between
the two, as shown in Eq. 3. Note that the robot’s bearing is
wrapped in the range θ → (−π, π].

e(t) = ξd − ξ = [xd − x, yd − y, θd − θ]T (3)

With this state error, the controller must implement some gain
matrix K, which will drive the error to zero.[

v(t)
ω(t)

]
= Ke(t) (4)

The forward kinematic model of a differential drive robot
is shown in Eq. 5 below.ẋẏ

θ̇

 =

cos θ 0
sin θ 0

0 1

[v
ω

]
(5)

The same kinematic model can be expressed in the following
polar coordinates, where the polar variables are illustrated in
Figure 2:

ρ =
√

∆x2 + ∆y2

α = −θ + arctan 2(∆y,∆x)

β = −θ − α,

Ensuring that [ρ, α, β]
T → [0, 0, 0]

T , the system will drive
to the desired state [1].

The new transformed kinematics—in polar coordinates—
can be rewritten in terms of v and ω [1] in Eq. 6.ρ̇α̇

β̇

 =

 − cosα 0
sinα/ρ −1
− sinα/ρ 0

[v
ω

]
, for α ∈ (−π/2, π/2] (6)

Following the proofs in [2], the control gain K becomes[
v
ω

]
=

[
kρ 0 0
0 kα kβ

]ρα
β

 . (7)

As shown in [1], for a linearized version of this system, it is
only stable under the following conditions:

kρ > 0

kβ < 0

kα − kρ > 0

A. Path Optimization

The desired goal state may sometimes lie behind the robot.
With the control law derived in Eq. 7, the robot will take path
p1, in Figure 3; however, an effective controller should allow
the robot to also drive backwards, along path p2, in order to
minimize the path taken to the goal.

The controller is effective for desired points that are in front
of the robot; however, the robot will always take a longer path
than simply driving backwards. To allow the robot to also drive
backwards, the control law must be modified for |α| > π/2.

In these cases, two changes must be made to the control
law [1], redefining α and reversing the velocity v.

ρ =
√

∆x2 + ∆y2

α = −θ + arctan 2(−∆y,−∆x)

β = −θ − α,

and

[
v
ω

]
=

[
−kρ 0 0

0 kα kβ

]ρα
β

 . (8)

In order to also track some desired angle—both forwards
and backwards—simply add θd to β.

2

Fig. 3: The control law must be able to handle desired points
that lie behind the robot, with the goal of minimizing the path
to the goal.

V. IMPLEMENTATION

The motion control described above was implemented in
a small differential drive robot, see Figure 4. Each wheel is
equipped with a Hall Effect wheel encoder that has a resolution
of approximately re = 1440 ticks/rev ± 10. For this lab,
the robot was localized using only the odometry readings.
Previous work with this robot [3] has demonstrated that
odometry-only localization is very accurate, with an absolute
positional error of 0.3 cm± 0.1 per meter traveled.

Fig. 4: The E160 robot, equipped with three IR distance
sensors and two wheel encoders.

The controller was implemented in Python, running on a
separate computer. The E160 robot houses an Arduino mini
and XBee wireless microcontroller. All of the computation
is done off-board. The results, which are motor speeds for
each wheel, are transmitted wirelessly to the robot at a rate of
10 Hz. The main control loop is outlined in Alg. 1, below.

Further expanding on the control update step, the point
tracker is outline in Alg. 2, below.

As seen in Alg. 2, ρ and α are set to zero when the robot
is close enough to the desired point. This is done because ρ
and α help the robot approach the desired point in the right
direction, but act sporadically because small values around
zero for ∆x and ∆y in will cause α to jump around because
arctan 2(∆y,∆x) = arctan(∆y/∆x).

Algorithm 1 Main Control Loop

1: function MAIN
2: z, r ← GetSensorMeasurements() . update sensor

readings and encoder counts
3: ξt ← Localize(ξt−1, z) . localize robot
4: R,L← UpdateControl(ξt, ξd) .

set left and right wheel speeds wait until 0.1 seconds have
elapsed since start of loops

5: end function

Algorithm 2 Point Tracker

1: function UPDATECONTROL(ξt, ξd)
2: ξe = ξd − ξt . Calculate state error
3: if ξe > minDistThreshold then
4: α = θt − arctan 2(ye, xe)
5: if −π/2 < α ≤ pi/2 then
6: ρ, α, β ← ForwardsControlLaw()
7: else
8: ρ, α, β ← BackwardsControlLaw()
9: end if

10: else. Robot has reached desired point, tracking angle
11: β = −θe
12: ρ, α = 0
13: end if
14: v, ω ← UpdateVelocities(ρ, α, β)
15: return R,L← UpdateWheelVelocities(v, ω)
16: end function

VI. RESULTS

The point tracking control algorithm was tested in both
simulation and hardware. The robots were tested by driving
to a series of waypoints, both forwards and backwards. The
main interface for the E160 robot is a Python graphical user
interface (GUI), shown in Figure 5.

Figure 6 shows an overhead path multiple starting positions,
all tracking the origin. Each robot starts at the edge of a circle
of radius 0.25 m, with its starting heading tangent to the circle.

A. Simulation

Both the simulated and actual E160 robot use the very same
control update laws, the only difference is the control gains
used. The simulated robot is modeled to follow the same
kinematics described in Section II-A. The control gains for
the simulation are:

kρ = 1.2

kα = 3

kβ = −1.3

The first set of tests was tracking just a desired angle. The
simulation was run on a series of desired heading waypoints
(θ = −π to π). The results are shown in Figure 7 below.

Figure 7 shows that the controller can reliably track any
desired heading, in simulation. Next, the simulation was tested

3

Fig. 5: Simulated E160 robot driving towards a desired point,
marked by an orange arrow. The start of the arrow lies at the
desired position, and the angle points in the direction of the
desired heading.

Fig. 6: Simulation results for a series of desired headings.

on a wide variety of waypoints, forcing the controller to drive
both forwards and backwards. The results of this test is shown
in Figure 8, below.

In every case, the simulation successfully tracked the de-
sired positions and headings.

B. Hardware

The very same control algorithm was used to point track
with a physical differential drive robot. The control gains used

Fig. 7: Simulation results for a series of desired headings.

Fig. 8: Simulation results for a series of desired waypoints and
headings. A total of 13 unique waypoints were tested.

for the physical robot are:

kρ = 1.0

kα = 2.7

kβ = −2.5

The very same angle test shown in Figure 7 was run in the
physical robot. The results are depicted in Figure 9, below.

Fig. 9: Hardware results for a series of desired headings.

4

Like the simulation, the physical robot was able to suc-
cessfully track all of the desired headings; however, there
is some slight steady-state error. This can be minimized
by increasing kβ , or altogether eliminated by including and
integral controller.

The physical robot was also tested on the same series of
waypoints used in Figure 8. Those results are shown below in
Figure 10.

Fig. 10: Hardware results for a series of desired waypoints
and headings. A total of 13 unique waypoints were tested.

VII. CONCLUSION

The point tracking algorithm described in this report is an
effective way of efficiently driving a differential drive robot
to a desired state. This, however, is not the only type of
motion controller for differential drive robots. There are trivial
motion controlling algorithms for traversing the state space;
for example: turning to face the goal, driving straight to the
goal, then turning to face the desired heading.

REFERENCES

[1] C. Clark, “E160 lecture 4 - state space control & point tracking,” 2018.
[2] K. Daniilidis and V. Kumar, “Cis 390 - control intro and appcliation to

differential drive vehicles.”
[3] S. Mahre and E. Shimelis, “Odometry Calibration and Error Characteri-

zation for a Differential Drive Robot,” Harvey Mudd College, Tech. Rep.,
02 2018.

5

	Introduction
	Background
	Differential Drive

	Problem Definition
	Control Design
	Path Optimization

	Implementation
	Results
	Simulation
	Hardware

	Conclusion
	References

