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Abstract—This report documents the odometery calibration
and testing of a differential drive robot. The robot was tested
by driving it to ten different distances, from 50 − 500 cm. At
each point, the estimated distance was compared to the measured
distance, yielding an absolute mean error of 0.68 cm ± 0.2.
From each point, the robot was driven back to the origin, and
both the (x, y) displacements were compared to the measured
displacement from the origin. The results showed an absolute
mean error of (4.4, 6.5) cm.

I. INTRODUCTION

The field robotics of robotics has a diverse range of loco-
motion techniques. From motors to legged motion, different
robots require different types of locomotion to traverse their
environment. In order to localize themselves, many robotic
systems rely on odometry as a means of using varying types
of motion sensors to estimate how the robot is moving.

II. BACKGROUND

A. Differential Drive

The most common drive type for wheeled robots is a
differential drive system. These types of robots are driven by
two separate wheels, often placed on either side of the robot’s
chassis. This allows differential drive robots two degrees of
freedom; and their state in an inertial, two dimensional space,
ξi, is

ξi = [x, y, θ]T ,

where (x, y) is the robot’s position, and θ is the robot’s
heading relative to a global reference frame.

The wheels on a differential drive system are mounted on a
common axis and can be driven both forwards and backwards.
Since the number of controllable degrees of freedom is lower
than the dimension of our state space, this system is nonholo-
nomic. Although this kinematic constraint will limit the local
mobility, the general accessibility to the state space remains
unaffected [1].

Fig. 1: The E160 robot chassis.

III. DIFFERENTIAL DRIVE KINEMATIC MODEL

The robot used in this report is a small, two-pound differ-
ential drive robot, shown in Figure 1. The diameter of each
wheel is 6.95 cm ± 0.01 and the distance between the center
of the two wheels is 14.15 cm ± 0.01. Each wheel also has
an encoder that is capable of measuring the relative rotation
of each wheel with a resolution of 4.36 × 10−3 rad/tick.

A diagram of the differential drive system is shown in
Figure 2. The overall movement of the differential drive robot
will depend on ∆sl and ∆sr, the distance traveled by each
wheel. This model assumes that the wheels do not slip.

Given the radius of each wheel, Rw, the number of mea-
sured ticks, d, and the conversion between number of ticks
and radians, γ = 4.36 × 10−3 rad/tick, we can calculate the
distance each wheel travels on the ground using Eq. 1.

∆sl,r = Rwdγ (1)
In order to convert the relative motion of each wheel into

the desired state space of the robot, ξi = [x, y, θ], we will
need to use ∆sl,r to specify the displacement and rotation
of the robot. The robot’s motion can be described as motion
along circular arcs, where the axis of rotation is called the
instantaneous center of curvature [2]. In Figure 3, we see that
the robot’s new motion is described using ∆s and α, both of
which can be defined in the global coordinate frame.

We can now define ∆s, ∆sl, and ∆sr using the formula
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Fig. 2: Differential drive system overview. The robot resides
in a global coordinate frame, (Xg, Yg). As each wheel is spun,
the robot’s motion will be dictated by the distance that each
wheel travels along the ground without slipping.

Fig. 3: Drive kinematics of a differential system expressed in
terms of motion along a curvature. The robot’s path, ∆s, is a
function of the distance from the center of the curvature, R,
and the displaced angle, α.

for calculating arc lengths:

∆sl = Rα

∆sr = (R+ 2L)α

∆s = (R+ L)α

The first two equations above can be used to solve for ∆s
in terms of ∆sl and ∆sr.

∆s =
∆sl + ∆sr

2
(2)

The same set of equations can be manipulated to find α in
Eq. 3, which is also equal to the robot’s heading displacement
∆θ [3].

∆θ =
∆sr − ∆sr

2L
(3)

For very small motions, we can approximate ∆s as a
straight line and calculate the displacement in the global
coordinate frame (Eq. 4-5):

∆x = ∆s cos(θ + ∆θ/2) (4)
∆y = ∆s sin(θ + ∆θ/2) (5)

The final motion of the robot in terms of ∆sl and ∆sr, in
the inertial frame, can be modeled in Equation 6.

∆ξi =

∆x
∆y
∆θ

 =

∆sl+∆sr
2 cos

(
θ + ∆sr−∆sr

2L

)
∆sl+∆sr

2 sin
(
θ + ∆sr−∆sr

2L

)
∆sr−∆sr

2L

 (6)

IV. CONTROL DESIGN

A PI (Proportional-Integral) controller was designed to drive
the robot to a desired distance, using the odometry estimates.
The controller equation (Eq. 7) outputs a control effort, u,
which is proportional to the current and integrated distance
error, e.

u = Kpe+Ki

∫
e dt (7)

Although this will move the robot to the desired distance, it
will not necessarily travel in a straight line. Small differences
in the wheel diameter or power output will cause heading
errors that will remain uncorrected. To prevent this, a PID
(Proportional-Interal-Derivative) controller was designed for
the heading. This controller ensured that the robot maintained
its heading as it traveled forward. This controller outputs a
control effort that is also proportional to the rate of change of
the error, and is shown in Eq. 8.

u = Kpe+Ki

∫
e dt+Kd

(
d

dt
e

)
(8)

The gains for both the distance and heading controllers were
adjusted until the performance was within an acceptable range;
this will be discussed further in the results section.

V. SOFTWARE IMPLEMENTATION

The state estimation software for the E160 robot is imple-
mented in Python and runs on a separate computer. The main
control loop in Figure 4 runs at a rate of 10Hz.
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1 d e f m a i n c o n t r o l l o o p ( ) :
2 u p d a t e s e n s o r m e a s u r e m e n t s ( )
3 l o c a l i z e ( )
4 u p d a t e c o n t r o l ( )
5 wait100ms

Fig. 4: Main control loop for the E160 robot.

VI. EXPERIMENT

In order to characterize the errors in odometry, the robot was
driven to a set of distances, ranging from 50−500 cm±2. The
experimental setup is shown in Figure 5. For each trial, two
sets of measurements were collected. The first measurement is
the y error after the robot has moved to the desired distance.
The x error isn’t measured at this time because it will depend
on the original orientation of the robot at the start. After this
measurement, the robot was driven backwards with the same
controller. After reaching the origin, the x and y displacements
were measured. It is important to note that even though the
robot did not always return to the origin, the odometry error
is the difference between the estimated state, ξi,est, and the
actual state, ξi. This will be discussed further in the results
section.

Fig. 5: Experimental setup for odometry error characterization.
The robot was driven to each marker and back to the origin.
The error was calculated by the final displacement of the
estimated and actual states.

A. Results

The robot’s desired and estimated states were logged at each
time step, and two sets of results are plotted in Figures 6-7. The
left-hand side of the plots compare the desired and estimated
x, y, and θ. The right-hand side of the plots illustrate the errors.

As expected, we see that the y position of the robot
approaches the desired distance, both forwards and backwards.

Fig. 6: Comparing the desired and estimated states for 1m run.

Fig. 7: Comparing the desired and estimated states for 5m run.

As the robot moves from one desired state to another, the
heading oscillates around the desired angle, as it attempts to
keep the robot moving straight.

Over the course of all ten distances, the overall errors
are characterized in Table ??. The error is defined as the
difference between the measured state and the estimated state.
The measurements in the table below have an uncertainty of
±0.2 cm

Distance (m) Forward y Error (cm) Origin (x, y) Error (cm)
0.5 0.1 (−0.7, 2.0)
1 0.3 (−1.22, 2.8)

1.5 0.1 (−1.4, 4.2)
2 −0.5 (0.1, 3.3)

2.5 0.6 (−0.2, 7.5)
3 1.3 (−2.7, 7.1)

3.5 1.2 (−6.6, 1.2)
4 1 (−9.2, 8.5)

4.5 0.5 (−10.5, 11.9)
5 1.2 (−11.6, 16.6)

The results were only collected for one set of trials. The
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mean absolute error in the forward odometry distance is
0.68 cm ± 0.2; however, when the robot drives back to the
origin, the mean error is (4.4, 6.5) cm ± 0.2.

VII. CONCLUSION

From the table above, we see that the origin-displacement
error grows with the distance that the robot travels. The
forward error remains relatively consistent, not growing more
than 2 cm. In the future, this experiment could be improved
by additional, repeated testing at each distance, in order to
characterize the error in terms of a distribution.
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